
Seasonal Carbon Dioxide Concentrations and Fluxes
Throughout Denmark's Stream Network
Kenneth Thorø Martinsen1 , Kaj Sand‐Jensen1 , Victor Bergmann1, Tobias Skjærlund1 ,
Johan Emil Kjær1 , and Julian Koch2

1Freshwater Biological Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark,
2Department of Hydrology, Geological Survey of Denmark and Greenland, Copenhagen, Denmark

Abstract Streams are important freshwater habitats in large‐scale carbon budgets because of their high CO2
fluxes which are driven by high CO2 concentrations and surface‐water turbulence. High CO2 concentrations are
promoted by terrestrial carbon inputs, groundwater flow, and internal respiration, all of which vary greatly
across space and time. We used environmental monitoring data to calculate CO2 concentrations along with a
wide range of predictor variables including outputs from a national hydrological model and trained machine
learning models to predict spatially distributed seasonal CO2 concentrations in Danish streams. We found that
streams were supersaturated in dissolved CO2 (mean = 118 μM) and higher during autumn and winter than
during spring and summer. The best model, a Random Forest model, scored R2 = 0.46, MAE = 46.0 μM, and
⍴ = 0.72 on a test set. The most important predictor variables were catchment slope, seasonality, height above
nearest drainage, and depth to groundwater, highlighting the importance of landscape morphometry and soil‐
groundwater‐stream connectivity. Stream CO2 fluxes determined from the predicted concentrations and gas
transfer velocities estimated using empirical relationships averaged 253 mmol m− 2 d− 1, and the annual
emissions were 513 Gg CO2 from the national stream network (area = 139 km

2). Our analysis presents a
framework for modeling seasonal CO2 concentrations and estimating fluxes at a national scale by means of
large‐scale hydrological model outputs. Future efforts should consider further improving the temporal
resolution, direct measurements of fluxes and gas transfer velocities, and seasonal variation in stream surface
area.

Plain Language Summary Streams play an essential role in the global carbon cycle as they usually
are very rich in CO2 and thus emit much CO2 to the atmosphere To estimate how much CO2 is emitted from
streams, we used environmental data to calculate CO2 concentrations and a wide range of terrain and stream
flow characteristics. We used this data to train a machine learning model to predict seasonal stream CO2
concentrations across Denmark. We found that CO2 concentrations in Danish streams were generally higher
during autumn and winter than during spring and summer. The key factors determining CO2 concentrations
included terrain slope, seasonality, elevation relative to nearby streams, and depth to groundwater. From the
national stream CO2 concentrations, we estimated the exchange of CO2 between stream and atmosphere and the
annual emissions. This study demonstrates how machine learning models and data from multiple sources can be
used to predict stream CO2 concentrations at large scales. The framework and model allow us to quantify and
manage the CO2 emissions from streams at a national scale.

1. Introduction
Freshwater ecosystems, particularly running waters such as rivers and streams (the term streams used from here),
play a crucial role in the global carbon cycle (Raymond et al., 2013). They link terrestrial habitats to the sea, and
facilitate the transport and processing of carbon (Cole et al., 2007). Mineralization of organic matter within
streams produces carbon dioxide (CO2), which, along with substantial external sources, contributes to the
commonly observed supersaturation of dissolved CO2 (Hotchkiss et al., 2015). This makes streams open windows
of CO2 emission to the atmosphere (Butman et al., 2016; Wallin et al., 2013). Spatiotemporal CO2 dynamics
comprise a complex interplay of biotic and abiotic factors.

The extensive variability of CO2 concentrations in streams are well documented (Marx et al., 2017; Sand‐Jensen,
Riis & Kjær et al., 2022). This variability is primarily driven by the dynamic nature of groundwater and terrestrial
contributions (Duvert et al., 2018; Humborg et al., 2010), and by the hydrology and biological processes that
influence both the flow of water and organic matter in streams and the gas flux across the air‐water interface

RESEARCH ARTICLE
10.1029/2024JG008031

Key Points:
• Environmental monitoring data and

hydrological model outputs can be
used to quantify stream CO2
concentrations and fluxes at national
scale

• Machine learning models can be
trained to predict seasonal stream CO2
concentrations based on catchment and
stream characteristics

• The most important drivers of stream
CO2 are related to landscape
morphometry and soil‐groundwater‐
stream connectivity

Supporting Information:
Supporting Information may be found in
the online version of this article.

Correspondence to:
K. Sand‐Jensen,
ksandjensen@bio.ku.dk

Citation:
Martinsen, K. T., Sand‐Jensen, K.,
Bergmann, V., Skjærlund, T., Kjær, J. E.,
& Koch, J. (2024). Seasonal carbon
dioxide concentrations and fluxes
throughout Denmark's stream network.
Journal of Geophysical Research:
Biogeosciences, 129, e2024JG008031.
https://doi.org/10.1029/2024JG008031

Received 22 JAN 2024
Accepted 1 JUL 2024

Author Contributions:
Conceptualization: Kenneth
Thorø Martinsen, Kaj Sand‐Jensen,
Julian Koch
Data curation: Kenneth Thorø Martinsen,
Victor Bergmann, Tobias Skjærlund,
Johan Emil Kjær, Julian Koch
Formal analysis: Kenneth
Thorø Martinsen, Kaj Sand‐Jensen,
Julian Koch
Funding acquisition: Kaj Sand‐Jensen
Investigation: Kenneth Thorø Martinsen,
Victor Bergmann, Tobias Skjærlund,
Johan Emil Kjær
Methodology: Kenneth Thorø Martinsen,
Julian Koch

© 2024. The Author(s).
This is an open access article under the
terms of the Creative Commons
Attribution License, which permits use,
distribution and reproduction in any
medium, provided the original work is
properly cited.

MARTINSEN ET AL. 1 of 15

https://orcid.org/0000-0001-8064-513X
https://orcid.org/0000-0003-2534-4638
https://orcid.org/0009-0003-4417-0642
https://orcid.org/0000-0002-4315-0258
https://orcid.org/0000-0002-7732-3436
mailto:ksandjensen@bio.ku.dk
https://doi.org/10.1029/2024JG008031
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1029%2F2024JG008031&domain=pdf&date_stamp=2024-07-06


(Hutchins et al., 2019; Long et al., 2015). These processes are subject to seasonal variations which can be
attributed to direct climatic drivers, such as temperature and runoff fluctuations, or indirect effects mediated by
local riparian or catchment‐scale factors, like terrestrial vegetation cover and land use changes. Consequently,
incorporating seasonality is crucial for enhancing the predictive capabilities of current models for CO2 con-
centrations in streams. Current methods to predict spatiotemporal stream CO2 concentrations are limited and the
temporal component is often neglected (Lauerwald et al., 2015; Martinsen et al., 2020) or only cover one or few
catchments. One recent exception is Liu et al. (2022), who predicted monthly CO2 concentrations in streams at a
global scale. To address this gap, our study combines traditional spatial data with hydrological model outputs to
improve seasonal predictions of stream CO2 concentration.

Hydrology influences stream CO2 concentrations. In particular, water velocity and discharge influence CO2
concentrations directly, because they drive water turbulence and gas transfer velocity and thus CO2 exchange
with the atmosphere. Furthermore, discharge also influences lateral inputs of organic matter and dissolved CO2
from land (Liu & Raymond, 2018). Groundwater is generally CO2 supersaturated and contributions are con-
strained by local hydrogeological and topographical settings (Crawford et al., 2014; Duvert et al., 2018).
Partitioning discharge into the constituting flow components could potentially improve predictions of CO2
concentrations because different flow components are expected to have different CO2 concentrations (Sand‐
Jensen, Riis & Kjær et al., 2022). Detailed hydrological models that integrate groundwater and surface water
processes are required for quantifying flow contributions in space and time. By combining traditional spatial
data with hydrological model outputs, we aim to provide more robust and process‐constrained seasonal pre-
dictions of stream CO2 concentrations and gas transfer velocities, ultimately enabling better estimates of
spatiotemporally upscaled CO2 fluxes.

Machine learning algorithms offer a promising approach to predicting CO2 concentrations in streams (Martinsen
et al., 2020). By leveraging large data sets of monitoring data and relevant predictor variables, machine learning
models can learn patterns and relationships that are not easily identifiable through traditional statistical methods
(Breiman, 2001). The advantages include improved accuracy and flexibility in modeling nonlinear relationships,
as well as their interactions (Olden et al., 2008). However, model interpretation can be challenging due to the
complexity of the algorithms (James et al., 2013). Traditional approaches rely heavily on simplifying assumptions
and parameterizations, whereas machine learning models are less transparent in their calculations. Ultimately,
integrating machine learning with the outputs of traditional modeling frameworks could lead to more accurate and
robust predictions of stream CO2 concentrations, offering insights into the complex processes governing carbon
cycling in freshwater ecosystems and permitting upscaling of fluxes to regional and national scales.

In this study, we compile country‐level data consisting of static catchment characteristics and dynamic hydro-
logical variables derived from a national hydrological model. With this data, we apply machine learning methods
to predict seasonal CO2 concentrations throughout the Danish stream network. We hypothesize that: (a) sea-
sonality is an important predictor of CO2 concentrations in streams, and (b) hydrological flow components, in
particular groundwater inflow, influence both CO2 delivery and emissions and should therefore improve pre-
dictability of CO2 concentrations in streams. We use the predicted CO2 concentrations and hydrological data to
estimate CO2 fluxes and compare these with in situ measurements. Finally, we upscale CO2 fluxes from the entire
Danish stream network.

2. Materials and Methods
We employed a model selection approach to identify the optimal model for predicting seasonal CO2 concen-
trations. CO2 concentrations were derived from observations of pH and alkalinity obtained through the national
environmental monitoring program. Additionally, a suite of hydrological and landscape environmental variables,
expected to influence stream CO2 dynamics, were included as predictor variables (Table S1 in Supporting In-
formation S1). CO2 observations were aligned with the locations along the stream network where the national
hydrological model of Denmark (DK‐Model), simulates discharge and flow components. For both the monitoring
and DK‐Model outputs, we used data spanning a range of 10 years from 2000 to 2009. The predicted CO2
concentrations were used to estimate the CO2 flux using the hydrological model components and aggregated to
obtain national CO2 emission estimates. The estimated seasonal CO2 fluxes are compared to in situ
measurements.

Writing – original draft: Kenneth
Thorø Martinsen, Kaj Sand‐Jensen,
Julian Koch
Writing – review & editing: Kenneth
Thorø Martinsen, Kaj Sand‐Jensen,
Victor Bergmann, Tobias Skjærlund,
Johan Emil Kjær, Julian Koch

Journal of Geophysical Research: Biogeosciences 10.1029/2024JG008031

MARTINSEN ET AL. 2 of 15

 21698961, 2024, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024JG

008031 by R
oyal D

anish L
ibrary, W

iley O
nline L

ibrary on [07/07/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2.1. Study Region

The topography of Denmark is generally low‐relief with elevations above sea‐level ranging from − 18 to 172 m,
mean annual precipitation of 2.3 mm d− 1, and mean air temperature of 9.0°C, during the study period. The
majority of soils are calcareous in nutrient‐rich moraine landscapes, except for SW‐Jutland which was not
covered during the Weichselian glaciation and has mainly well‐leached, sandy soils lower in carbonate and clay
minerals (Figure 1a). Due to mineral weathering, this has resulted in differences in water chemistry between the
less alkaline SW‐Jutland and more alkaline major parts of Denmark. The land use is dominated by agriculture
(approx. 60%).

2.2. Predicting Stream CO2 Concentrations

2.2.1. CO2 Concentrations

Stream CO2 concentrations were calculated from daytime measurements of alkalinity, pH, and water temperature
sampled as part of the national environmental monitoring program (Lauridsen et al., 2005). Specifically, we
calculated CO2 concentrations using the AquaEnv R‐package (Hofmann et al., 2010). Estimates of CO2 from
alkalinity and pH are subject to high uncertainty in low‐alkalinity (<1 meq L− 1), acidic, often humic waters, with
an increasing degree of overestimation as alkalinity decreases further toward zero (Abril et al., 2015). However,
Danish catchments are generally rich in carbonate minerals resulting in alkaline waters, and show close agreement
between measured CO2 concentrations and those estimated from alkalinity and pH (Sand‐Jensen, Riis & Kjær
et al., 2022). In our data, 21.6% of observations were below 1 meq L− 1 and 4% below 0.5 meq L− 1. To avoid
unrealistically high values, we excluded observations with low pH (<5.4; 0.6% of observations) and very high
estimated CO2 concentrations (40,000 μatm; 0.05% of observations) similar to other studies (Hastie et al., 2018;
Martinsen et al., 2020). We determined seasonal means for sites with four or more observations resulting in 745
seasonal CO2 concentrations from 309 sites for further analysis.

2.2.2. Catchment Delineation

We delineated the topographical catchment areas for each of the 62,726 DK‐Model surface water simulation
points (Q‐points) using a digital elevation model (DEM) with a resolution of 10 m, resampled from a high‐
resolution (1.6 m) national DEM (SDFI, 2021). DEM processing and catchment delineation were carried out
using the WhiteboxTools and TauDEM software (Lindsay, 2016a, 2016b; Tarboton, 2017). Specifically, the
DEM was preprocessed to remove hydrological sinks, areas where water would accumulate due to cells being
surrounded by higher elevations, using a hybrid breaching and filling approach (Lindsay, 2016a, 2016b). This was
followed by determination of flow directions using the deterministic‐eight flow scheme (O’Callaghan &
Mark, 1984). We extracted a virtual stream network and snapped DK‐model Q‐points to this network with a
maximum distance of 100 m and delineated the catchment area.

2.2.3. Dynamic Hydrological and Meteorological Variables

We included hydrological and meteorological variables for each stream site and season. Simulated discharge and
four flow components from the DK‐Model were used for further analysis. The DK‐Model is a physically based
and spatially distributed hydrological model that, using the MIKE SHE model code, integrates groundwater,
surface water, and anthropogenic activities. The DK‐Model has been developed by the Geological Survey of
Denmark and Greenland over the last 25 years (Henriksen et al., 2023; Højberg et al., 2013; Soltani et al., 2021)
and is currently used in basic research and a range of applications such as national water resources assessments,
status of water resources, and adaptation to climate change. The DK‐model simulates daily flow components and
total discharge at 62,726 Q‐points throughout the stream network. The flow components are simulated locally and
are added to the total discharge which aggregates all upstream flow contributions. The components are (a)
overland inflow (OF), (b) groundwater inflow (GWF), (c) drainage inflow from groundwater (DF), and (d) and
drainage inflow from ponded water (DPF) (Figure S1 in Supporting Information S1). OF represents water flow on
the terrain following topographical gradients and the process is initiated in a grid cell when the overland storage
exceeds predefined detention storage. GWF represents the direct exchange between groundwater and surface
water. Most streams in Denmark are associated with a positive GWF, indicating that groundwater contributes as
baseflow to the discharge generation. Such a condition is referred to as gaining streams and initiated by an upward
groundwater gradient in the stream channel. DF represents water that moves from groundwater storage to local
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Figure 1. (a) Map showing the stream network included in the DK‐model (blue) and stream sites (open points) with one or
more observations of seasonal CO2 concentration. The orange line represents the maximum extent of the ice sheet during the
most recent ice age where eastern Denmark was covered by ice and SW‐Jutland remained ice‐free. (b) Density distributions
(gray) and boxplots of seasonal CO2 concentrations. Box plots show median (solid horizontal line), 25% and 75% quartiles
(upper and lower hinge), lines extending to one and a half times the inter‐quartile range (upper and lower whisker), and
observations outside this range (points).
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surface waters and DF is initiated in a grid cell when the groundwater level exceeds a predefined drain depth.
Within the DK‐model, DF is expected to represent tile drainage from agricultural fields. Since detailed data on the
location and effectiveness of tile drains are absent at national scale, the drain flow process representation is
calibrated against streamflow observations to obtain effective parameter values. DPF represents processes of
urban drainage networks and ponded water that moves to local surface waters. Typically, DF constitutes a major
part of the generated flow and is highly variable in time with the largest flows occurring during winter and spring
when groundwater levels are highest. GWF varies less in time than DF and contributes much of the flow generated
during summer. OF and DPF are more variable in time and space and are driven by intense precipitation events.

We removed Q‐points that were located within lakes (3,172), specific to the DK‐model (2,741), more than 100 m
away from the virtual stream network (3,810), and/or did not intersect the DEM (613). For each DK‐model Q‐
point, daily discharge and the four flow components were averaged seasonally. From national climate grids,
we extracted seasonal mean precipitation (10 km grid) and air temperature (20 km grid) for each catchment
(Scharling, 1999a, 1999b).

2.2.4. Static Variables

The static attributes are stated in three different ways: (a) as average values of relevant map layers over the
catchment area, (b) as site‐specific values, or 3) as locally aggregated statistics using a 200 m buffer analysis.
These map layers included for example, slope and hydrological landscape indices such as height above the nearest
drainage (HAND), derived from the 10 mDEM. HAND represents the vertical distance between a terrain grid cell
and the stream grid cell it drains to (Rennó et al., 2008). We extracted land use from a national 10 m data set
(Levin, 2022), geology‐related variables (Adhikari et al., 2013), and the simulated groundwater depth averaged
over time of the DK‐Model. Furthermore, we identified land use in the near upstream area using the intersection
between a circular 200 m buffer zone and the catchment for each site. See Table S1 in Supporting Information S1
for a detailed overview of the predictor variables.

2.2.5. Modeling

We split the data into a training (80%) and test (20%) data set. We grouped observations by stream site such that
observations from the same site were not split during resampling. Inter‐correlation between numeric predictor
variables was assessed using Pearson correlation. Before modeling, the “season” predictor variable was one‐hot
encoded, and numeric predictor variables were preprocessed by applying the Yeo‐Johnson power transformation
followed by zero‐mean and unit variance standardization. Using the training data, we explored the performance of
several different models by 5‐fold cross‐validation (outer loop) to select the best model. Many machine learning
models require tuning of hyperparameters for optimal performance. We defined hyperparameter search spaces
which were sampled using 50 iterations of random search and evaluated using 5‐fold cross‐validation (inner
loop). Model selection was performed using nested cross‐validation. The best model was then trained on the entire
training data set, evaluated on the test set, and used to make predictions for all DK‐model sites (53,668). To assess
model performance, we determine the R2, root mean squared error (RMSE), mean absolute error (MAE), Pearson
correlation coefficient (⍴), and mean absolute percentage error (MAPE). The influence of predictor variables on
CO2 concentrations in the best model was investigated using permutation variable importance and partial
dependence plots. To explore the influence of the number of training observations on model performance we
assessed cross‐validated performance using random subsets of the training data of different sizes. Machine
learning models were trained and evaluated using the Python scikit‐learn library (Pedregosa et al., 2011).

2.3. Estimating Stream CO2 fluxes

2.3.1. CO2 flux Estimates

The CO2 flux is the product of the gas transfer velocity (k) and the air‐water concentration gradient:

F = k(CO2− water − CO2− sat) (1)

We estimated CO2 flux from the predicted seasonal CO2 concentrations and empirical relationships for k
assuming an atmospheric partial pressure of 400 μatm for the study period 2000–2009. Partial pressure was
converted to concentration using Henry's Law as a function of water temperature. Seasonal water temperature was
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estimated for all sites using a fitted linear relationship between observed water temperatures and air temperatures
(Figure S2 in Supporting Information S1). k600 (m d

− 1), k normalized to a Schmidt number of 600 (CO2 at 20°C),
was estimated as a function of water velocity (v, m s− 1) and slope (s, dimensionless) based on the relationship
(k600 = v × s × 2,841 + 2.02) from Raymond et al. (2012). k at the ambient temperature is determined using the
ratio of Schmidt numbers based on relationships in Jähne et al. (1987) and Wanninkhof (1992). Water velocity
was estimated from DK‐model derived discharge (m3 s− 1) using hydraulic geometrical relationships
(v = 0.19 × Q0.29; Raymond et al., 2012), and the slope was determined for each stream segment of the virtual
stream network using TauDEM. CO2 fluxes could be estimated for 53.653 DK‐model q‐points.

2.3.2. CO2 Flux Measurements

To validate the estimated CO2 fluxes we measured daytime CO2 fluxes using floating chambers multiple times
across Denmark (Rivers Tryggevælde, Odense, Omme, and Tude) resulting in 54 measurements from 27 stream
sites. Floating chambers were equipped with small, inexpensive sensors (SenseAir, Sweden) as described in
Bastviken et al. (2015) measuring the headspace CO2 partial pressure every 30 or 60 s for at least 20 min. The flux
was determined by the change in CO2 partial pressure over time:

F =
dCO2
dt

VP
RTA

(2)

where dCO2/dt is the slope estimate by linear regressions, P is the atmospheric pressure (atm), V is the chamber
volume (0.008 m3), A is the chamber area (0.075 m2), R is the gas constant (m3 atm K− 1 mol− 1) and T is the
temperature (Kelvin). We used the average flux determined from two or three chambers at each visit. On most
occasions, we measured pH in the field (YSI Professional Plus, USA) and collected water samples for measuring
alkalinity using Gran titration (Gran, 1952) and to calculate the CO2 concentration.We also determined k from the
observed CO2 concentration and flux according to Equation 1, and normalized k to k600 for comparisons.

2.3.3. Upscaling CO2 Fluxes

We determined the annual CO2 flux from the Danish stream network using the estimated fluxes. We sampled the
stream network at 100 m resolution (191.165 sites), estimated stream width for all sites, and used nearest neighbor
interpolation to determine the flux. Stream width was determined as a function of catchment area using empirical
relationships in Denmark for six geographical regions (Table S2 in Supporting Information S1; Olsen &
Højberg, 2011). Based on this analysis, the average stream width was 7.3 m with a standard deviation of 6.5 m.
Since the relationships were based on the catchment area, the stream area did not differ between seasons. Finally,
the annual flux was determined by multiplying the flux, stream width, and resolution used for sampling the stream
network before aggregating by season. The upscaling procedure proved insensitive to the applied sampling
resolution.

3. Results
3.1. CO2 Concentrations

For the 745 seasonal observations used in the analysis, the mean alkalinity was 2.6 (range 0.05–7.6) meq L− 1 with
a pH of 7.7 (range 6.0–8.7). The mean CO2 concentration was 118 (range 8–832) μM with significant seasonal
differences (One‐way ANOVA, F = 21.2, p‐value <0.0001). Concentrations were lower in spring and summer
compared to autumn and winter but there were no pairwise differences between winter versus autumn or spring
versus summer (Figure 1b). 737 observations (98.9%) had CO2 concentrations above air saturation, highlighting
the prevalence of CO2 supersaturation in streams.

3.2. Modeling CO2 Concentrations

We evaluated the performance of several models for predicting seasonal stream CO2 concentrations from
catchment characteristics, hydrology, and climate (Table S3 in Supporting Information S1). Many of the models
performed poorly indicating that relationships between CO2 concentrations and predictor variables were com-
plex. Furthermore, the performance of the 5 cross‐validation folds was subject to high variability. Based on all
performance metrics, the Random Forest model showed superior performance and was therefore selected for
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further analysis. Following training on the entire training data, the Random Forest model was evaluated on the test
set (R2 = 0.46, MAE = 46.0 μM, RMSE = 79.8 μM, ⍴ = 0.72, and MAPE = 57%). The model appeared to over‐
predict at lower CO2 concentrations which was most common in spring and summer (Figure 2).

The model was used to make seasonal predictions for all DK‐model Q‐points (Figure 3). At the regional scale,
predicted CO2 concentrations were related to geology with high concentrations in the glacial outwash plains west
of the main stationary line of the most recent ice age, that is, SW‐Jutland (Figure 1a) and in the southern islands
with low relief landscape. The performance estimated during model selection (Table S3 in Supporting Infor-
mation S1) and the performance determined on the test set were quite different. We investigated the sensitivity of
the model to different sizes of training data and found that performance increased with the size of the training data
and variability between cross‐validation folds remained substantial (Figure S3 in Supporting Information S1).

We explored the importance of the predictor variables and their relationship to stream CO2 concentrations. The
most important predictor was the mean catchment slope, followed by HAND, and air temperature (Figure 4a). The
functional relationships, without considering interactions, were generally as expected (Figure 4b). The influence
of slope and HAND was most pronounced at low mean catchment slopes and HAND, indicating that CO2
concentrations are higher in streams in flat terrain where contact between stream water and soils is likely to be
high. The response to temperature followed the expectation that CO2 concentrations would be greater during
winter and lower in summer. Several of the predictor variables, for example, catchment slope, were related to
other predictor variables (Figure S4 in Supporting Information S1).

Figure 2. Observed (x‐axis) and predicted values (y‐axis) of stream CO2 concentrations (μM) from the test set colored by
season with density distributions on the margins. Predicted CO2 concentrations are based on a Random Forest model.
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3.3. CO2 Fluxes

CO2 fluxes determined from the predicted CO2 concentration and estimated k had an overall mean of
253 mmol m− 2 d− 1 with the highest fluxes during winter and lowest during spring (Table 1). We estimated the
CO2 flux for all sites to produce national maps of seasonal CO2 fluxes (Figure 5). The maps highlight regions with
high CO2 fluxes, for example, SW‐Jutland and Lolland‐Falster, which coincide with areas with high predicted
CO2 concentrations (Figure 3). Spatial patterns of CO2 flux within the stream network were consistent with
expectations. Lower CO2 concentrations were observed at lake outlets during summer and increased gradually
with increasing distance downstream from the outlets (Figure 6).

Floating chamber measurements of CO2 fluxes had a mean of 186 mmol m
− 2 d− 1 and a larger variation than the

estimated flux (range 80–349 mmol m− 2 d− 1). We found good agreement between observed and estimated CO2
fluxes for some of the observations, while others had been substantially overestimated (Figure 7a). Observed and
estimated CO2 concentrations showed better agreement than the corresponding k‐values.

Figure 3. Predictions of CO2 concentration for each season (a–d) covering Denmark based on a Random Forest model. The stream network consists of sites included in
the hydrological DK‐model.
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Based on the national stream CO2 flux estimates we calculate aggregated national estimates of 512.6 Gg CO2
year− 1 (spring = 440.3, summer = 513.4, autumn = 541.2, and winter = 555.2 Gg CO2 year

− 1). The total stream
area was 139 km2 yielding an annual average of 3,675 g CO2 m

− 2 stream y− 1 or 11.9 g CO2 m
− 2 y− 1 for

Denmark's total surface area (43,100 km2).

4. Discussion
4.1. Predicting Stream CO2 Concentrations

We show how a machine learning approach can be used to predict stream CO2 concentrations from catchment
features, similar to other studies (Lauerwald et al., 2015; Martinsen et al., 2020) and expand with two key aspects,
namely adding seasonal resolution and including dynamic hydrological features from a national scale hydro-
logical model. The predicted CO2 concentrations in Danish streams are as expected generally supersaturated
(Rebsdorf et al., 1991) and lowest in spring and summer and higher during autumn and winter (Jones & Mul-
holland, 1998; Sand‐Jensen & Staehr, 2012). This influence of seasonality was evident from the response to air

temperature with highest CO2 concentrations in winter at low surface irra-
diance and photosynthetic activity and thus not a direct effect of air tem-
perature. Visual assessment of the map of predicted CO2 concentrations
revealed localized deviations from the expected pattern observed in adjacent
sites. These discrepancies likely originated from errors in the catchment
delineation, resulting in disparate predictions for seemingly similar stream
sites. Employing a higher resolution DEM could have potentially mitigated
these discrepancies and improved predictions in these specific areas. Within
the stream network, summer CO2 concentrations at lake outlets were sub-
stantially reduced, approaching the atmospheric saturation, due to higher
residence time with air contact and primary production in lakes (Sand‐Jensen,
Riis & Kjær et al., 2022; Weyhenmeyer et al., 2012). The lake effect is
pronounced downstream of the common eutrophic lakes in Denmark, where

Figure 4. (a) Mean (point) ± standard deviation (line range) permutation variable importance computed on the test set for all predictor variables. (b) Relationship
between predicted CO2 concentration (y‐axis) and the four most important predictor variables (x‐axis) determined using partial‐dependence plots.

Table 1
Summary Statistics of Estimated Stream CO2 Fluxes (mmol m− 2 d− 1) for
Each Season

Season Q2.5% Q50% Q97.5% Mean

Autumn 118 237 593 268

Spring 89 191 492 218

Summer 115 225 529 253

Winter 118 241 651 276

Note. The fluxes were estimated from predicted CO2 concentrations and
empirical hydrological relationships.
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dissolved CO2 essentially is consumed entirely, while the concentration increases with distance downstream from
the lake outlet (Sand‐Jensen, Riis & Kjær et al., 2022). Seasonal resolution of CO2 concentrations is not only
important for improving the accuracy of stream CO2 fluxes but also for modeling performance and distribution of
aquatic macrophytes whose rates of photosynthesis depend on CO2 concentrations (Sand‐Jensen, Riis & Mar-
tinsen et al., 2022; Demars & Trémolières, 2009).

Surprisingly, the hydrological variables were not among the most important predictors. We expected that DF
would be important, as this flow component is expected to be very rich in dissolved CO2 originating from soil
respiration (Halbedel & Koschorreck, 2013; Marx et al., 2017; Sand‐Jensen & Staehr, 2012). However, DF and
OF components are more event‐driven, in contrast to GWF which is more constant over time. The event‐driven
contributions may be neglected at the seasonal timescale applied in the analysis. Moreover, the flow components
represent contributions resulting from processes simulated for a discrete location, which is very sensitive to the
parameterization of the underlying hydrological model around that location, that is, conceptualization of
hydrogeological layers or drain flow. Other predictors such as mean groundwater depth and HAND, which are

Figure 5. Estimated CO2 flux for each season (a–d) covering Denmark. The fluxes are estimated from predicted CO2 concentrations and empirical hydrological
relationships. The stream network consists of sites included in the hydrological DK‐model.
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also expected to be correlated with water table depth (Koch et al., 2021; Rennó et al., 2008), are however
important variables. Rocher‐Ros et al. (2019) also found that a depth‐to‐water index improved predictions of
stream CO2 concentrations, highlighting the importance of soil‐groundwater‐stream interactions which can be
highly discrete (Duvert et al., 2018; Lupon et al., 2019), calling for increased spatial sampling resolution.
Similarly, catchment slope emerges as the most important predictor in agreement with several other studies
(Lauerwald et al., 2015; Liu et al., 2022; Martinsen et al., 2020). Catchment slope may affect stream CO2 con-
centrations in several ways but most importantly influences catchment carbon accumulation, that is, longer
storage in low‐slope landscapes, and higher CO2 flux across the air‐water interface (Smits et al., 2017; Wallin
et al., 2011) indicating why slope repeatedly emerges as an essential proxy of stream CO2 concentration.

4.2. Estimating and Measuring Stream CO2 Fluxes

The relationship between estimated and in situ CO2 fluxes is poor. While the spatial and temporal coverage of the
in situ measurements is not high, they provide an initial evaluation of the estimated CO2 fluxes which is often
lacking in large‐scale studies. While we did expect a better relationship, there is an apparent scale issue when
comparing instantaneous and seasonal fluxes. The discrepancies appear to be larger during summer and similarly
for test set predictions of CO2 concentrations where the overestimated values are predominantly observations
during spring. Spring and summer are seasons where ecosystem metabolism is highest (Kelly et al., 1983; Sand‐
Jensen & Frost‐Christensen, 1998), and expectedly also the within‐site variation. Consequently, diel variations in
CO2 concentrations can be pronounced (Sand‐Jensen, Riis &Martinsen et al., 2022) complicating the comparison
between instantaneous measurement and seasonally predicted CO2 concentrations. Accounting for the type of
primary producers, for example, benthic algae or submerged macrophytes, could improve future modeling efforts
as reaches dominated by the latter appear to have prolonged periods of high production in contrast to that of
benthic algae which are more temporally variable (Alnoee et al., 2016, 2020).

Figure 6. Predicted CO2 concentration (a) and estimated fluxes (b) during summer around Lake Fure, north of Copenhagen.
The geographical area is approximately 5 by 20 km with the stream network and lakes larger than 104 m2 shown in blue.
Three sites with high estimated CO2 flux have been removed to improve visualization.
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In the comparison of estimated and in situ CO2 fluxes, the overestimated
fluxes appear to be a result of overestimated k values while CO2 concentra-
tions showed better agreement. Many of the overestimated fluxes were from
the same sites, for example, six observations are from two sites close to each
other in River Tryggevælde and three are from the same site in River Odense.
This suggests that the estimated fluxes are not suitable for local (stream site)
considerations but rather regional estimates of stream CO2 fluxes. k is esti-
mated in two steps using discharge and slope (Raymond et al., 2012) where
the latter is more reliably determined from elevation models. However, the
estimation of velocity solely based on discharge appears to introduce much
higher uncertainty (Liu et al., 2022) which is also evident from the empirical
relationship explaining a relatively low proportion of the variation
(R2 = 0.49). While aggregating multiple observations or empirical relation-
ships may reduce the variability, there is a need for improved relationships to
predict k in large‐scale studies. Furthermore, the empirical relationship for k
has a rather high intercept (2.02 m d− 1; Raymond et., 2,012). Lower k values
have been reported in the literature (Sand‐Jensen & Staehr, 2012; Wallin
et al., 2011), suggesting a potential bias in upscaling, particularly in lowland
regions like Denmark. Better knowledge of stream cross‐sections or using
hydrodynamic models that directly simulate velocity would likely improve
estimates but might be difficult or computationally expensive to apply at
scale. There has been recent progress in the development of empirical re-
lationships, for example, Ulseth et al. (2019) identified different relationships
for k in low‐ and high‐energy streams but other variables might also cause
differences in k or water velocity for otherwise similar streams including
wind‐exposure (Beaulieu et al., 2012), surface‐films (Salter et al., 2011), and
high submerged macrophyte biomass that markedly reduce mean velocity and
introduce extensive small‐scale variability of velocity within and outside
macrophyte patches (Sand‐Jensen, 2008; Sand‐Jensen & Mebus, 1996).
Developing relationships for k and differentiating between streams based on
the most important drivers of k could further improve the models (Thyssen &
Erlandsen, 1987;Wang et al., 2021), which is particularly important for small,
lowland stream networks where CO2 concentrations are high.

4.3. Large‐Scale CO2 Flux Estimates

The estimated average national streamCO2 flux (3,675 gCO2m
− 2 stream y− 1)

was of similar magnitude to those found in other studies when normalized by
stream area. For Sweden, Humborg et al. (2010) estimated 6,785 g CO2
m− 2 y− 1 andWallin et al. (2018) estimated 14,104 gCO2m

− 2 y− 1 only for low‐
order (1–4) streams and for the United States, Butman and Raymond (2011)
estimated 8,690 g CO2 m

− 2 y− 1.

The monitoring data used for analysis is generally collected during the day-
time when CO2 concentrations usually are lower due to photosynthesis
compared to nighttime (Rocher‐Ros et al., 2020; Sand‐Jensen & Frost‐
Christensen, 1998) which could result in the underestimation of large‐scale
CO2 fluxes. Multiple studies have found higher CO2 fluxes in streams dur-

ing nighttime than daytime (Attermeyer et al., 2021; Gómez‐Gener et al., 2021). The degree of underestimation
depends on the productivity of benthic primary producers and could thus be substantial in a Danish setting
(Alnoee et al., 2020; Kelly et al., 1983; Sand‐Jensen, Riis & Kjær et al., 2022).

Another essential parameter for upscaling fluxes is the stream area (Wallin et al., 2018). In our approach, we apply
empirical relationships between upstream area and stream width, which does not consider seasonal variations.
The smallest streams are not part of the stream network included in the DK‐model. Our stream network corre-
spond to approximately 29.5% of the length and 75% of the area compared to previously published data on stream

Figure 7. Estimated and observed stream CO2 flux (a), CO2 concentration
(b), and k (c) colored by season and the 1:1 relationship (dotted line).
Observed CO2 concentrations were determined from pH and alkalinity,
estimated k based on empirical relationships, and estimated CO2 flux from
estimated k and CO2 concentration predicted by a Random Forest model.
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length and area for Denmark (Sand‐Jensen et al., 2006). As smaller streams often have higher CO2 concentrations
and dominate the flux (Butman & Raymond, 2011; Wallin et al., 2018), the resulting large‐scale estimates are
underestimated. The increasing availability of high‐resolution remote sensing imagery should enable improved
stream area inventories in the future. While this can be challenging in certain habitats such as forests, better
mapping is needed, particularly during the cold wet seasons when emissions are higher. Meanwhile, upscaling
relies on empirical relationships as a function of the catchment area or discharge (Liu et al., 2022), which
preferably should originate from the study region.

Driven by climate change, precipitation has increased (Pasten‐Zapata et al., 2019) yielding higher groundwater
levels in Denmark during the last decades bringing groundwater closer to the terrain and increasing the extent of
flooding low‐lying terrain (Seidenfaden et al., 2022). This development is expected to continue in the future,
elevating the nationally averaged groundwater table by 0.12 m towards the end of the century (Seidenfaden
et al., 2022). Individual climate models do however predict an average change of over 0.4 m with large spatial
variations. This change is expected to increase the CO2 flux from streams due to a greater influx of CO2‐rich
groundwater and release from wider streams and periodically inundated terrestrial areas with easily degradable
organic matter.

5. Conclusions
This study highlights the utility of machine learning models in predicting stream CO2 concentrations and in turn
estimating fluxes in Denmark. The final Random Forest model appeared to perform well, albeit with over-
estimation at lower concentration levels but captured the expected seasonal patterns in the stream network. The
most important predictors were catchment characteristics related to soil‐groundwater‐stream connectivity and
seasonal variations. An apparent validation exercise using instantaneous in situ CO2 flux measurements suggests
future research efforts should aim at refining models at local scales and improve estimation of gas transfer ve-
locity at larger scales. The study demonstrates the potential for predicting large‐scale patterns in environmental
variables such as CO2 fluxes by integrating hydrological models and machine learning techniques. These findings
have implications not only for ecosystem modeling but also for informing management strategies to adapt to
stream carbon dynamics in a changing climate.

Data Availability Statement
Data used for the analysis are available from the sources cited in the main text. The DK‐model data can be
downloaded from https://hipdata.dk/. The flow components are available upon request, since they are not
available via the data portal. The measurements of stream CO2 fluxes, predicted CO2 concentrations, estimated
CO2 fluxes, and scripts used for the analysis and figures are available from an online repository (https://doi.org/
10.5281/zenodo.11072444; Martinsen et al., 2024).
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